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• What is Diffusion? Diffusion-weighting in MRI
• Diffusion Tensor Model and DTI 
• Tract-Based Diffusion analysis (TBSS)
• Distortion Correction for Diffusion MRI

Overview



Diffusion - Brownian Motion 

Robert Brown (1773-1858)

Molecules are in constant motion at non-
zero absolute temperatures (> -273o C)

Diffusion = thermally-driven random motion



Diffusion - Brownian Motion 

Albert Einstein (1879-1955) mean squared 
displacement

time

time

How can we describe this motion?  
For an ensemble of molecules, in n-dimensional 
space:

Diffusion 
coefficient

Valid for a homogeneous,  
barrier-free medium.
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Water Diffusion in the Brain. Why is it Interesting? 

Diffusion is restricted by tissue boundaries, membranes, etc. 
Marker for tissue microstructure (healthy and pathology) 
Diffusion is anisotropic in white matter               [Beaulieu, NMR Biomed, 2002]

IsotropicIsotropic Anisotropic



“Looks” like 
free diffusion

Observed diffusion in tissues depends on the experiment =  
“Apparent diffusion” &   

“Apparent diffusion coefficient” (ADC)

“Doesn’t look” like 
free diffusion

Apparent Diffusion



Measuring Diffusion with MRI: 
Diffusion MRI (dMRI) 

90 180

G G

read

Pulsed-Gradient Spin-Echo Sequence:  
To achieve diffusion-weighting along a direction x, apply strong 
magnetic field gradients along x.

If particles diffuse along x during the allowed time (DiffTime), a signal 
attenuation is observed, compared to the signal with G=0.

[Stejskal & Tanner, 1965]

Diffusion Time t



90 180

Diffusion Time t

G G

read

Pulsed-Gradient Spin-Echo Sequence:  
To achieve diffusion-weighting along a direction x, apply strong 
magnetic field gradients along x.

[Stejskal & Tanner, 1965]

D ~ 2.4 µm2/ms 
t~50ms x=  6Dt  ~27µm➨

st. deviation of displacements

Measuring Diffusion with MRI: 
Diffusion MRI (dMRI) 



T2w Image 
No Diffusion-weighting 

(G=0)  
S0

Diffusion-weighted  
Image  

S
Ratio 
S/S0 

Removes T2w contrast 

Measuring Diffusion with MRI: 
Diffusion MRI (dMRI) 



b value ~ G2 . DiffTime   (units in s/mm2)

Diffusion contrast can be modulated by: 
A) Diffusion weighting: Gradient strength, Diffusion time 

b=0 b=300 b=1000 b=2000 b=3000

       More diffusion contrast with higher b :) 
…But less signal left - exponential decay :(

Measuring Diffusion with MRI: 
Diffusion MRI (dMRI) 



Diffusion contrast can be modulated by: 
B) Gradient Direction x

b=0 b=1000 b=1000 b=1000

x x x x

b=1000

Measuring Diffusion with MRI: 
Diffusion MRI (dMRI) 



Orientation Contrast in dMRI

Because diffusion is 
anisotropic in WM, 
applying a gradient G 
along different 
directions x, gives 
different contrast in 
WM. 

Anisotropic 
measurements in 
WM! 

Roughly Isotropic in 
GM and CSF. 
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Signal with b=0

• Normally a few (at least one) b=0 volumes acquired, 
along with shells at higher b (~1000 s/mm2). 

• A shell is a set of volumes acquired with the same 
b-value, but different gradient orientation

A Typical dMRI Protocol
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dMRI Summary 

time

- Images acquired with a Gradient along x, have contrast 
that is sensitive to diffusion of water molecules along x. 
  
- Images acquired with higher b-values (stronger gradient/
longer diffusion time) are more sensitive to diffusion along 
x. 

- When diffusion occurs, signal is attenuated compared to 
the one with no diffusion-weighting. 

- In WM, measurements are anisotropic.  

- In GM and CSF, measurements are roughly isotropic. 



Diffusion Tensor Imaging - basic principles

• Diffusion in brain tissues 
• Apparent Diffusion Coefficient
• Diffusion Tensor model
• Tensor-derived measures



- Apply the diffusion tensor model to a set of dMRI images. 

Model Assumptions 
- The tensor model assumes that diffusion within tissues is 
Gaussian  
But instead of a homogeneous medium (scalar variance), 
assumes anisotropic behaviour (covariance).  

=> Instead of a scalar diffusion coefficient, use the Diffusion 
Tensor: a 3x3 matrix that describes anisotropic diffusion. 

                       Diffusion displacements ~ N3 (0, 2tD) 

Diffusion Tensor Imaging (DTI)

…



Diffusion Tensor Imaging (DTI)
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Diffusion Tensor Model. In each voxel:

Diffusion Tensor Imaging (DTI)

Sj = S0 exp(-bj xjT D xj)

Signal measured after applying 
a Gradient j with direction xj and 

b-value bj (measured)

3x3 Diffusion Tensor (unknown)

Signal measured with no 
diffusion gradient applied 

(measured)

[Basser, Biophys J,1994], [Basser et al , J Magn Res, 1994]

Unit vector representing the 
direction of gradient j (known)

b-value for gradient j  
(known)



The Elements of the Diffusion Tensor

0

2.10-3 
mm2/s

ADCx

ADCy

ADCz

-2.10-3 
mm2/s
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- Tensor is symmetric (6 unknowns) 

- Diagonal Elements are proportional 
to the diffusion displacement 
variances (ADCs) along the three 
directions of the experiment 
coordinate system 

-Off-diagonal Elements are 
proportional to the correlations 
(covariances) of displacements along 
these directions

N3 (0, 2tD)



Why do we need a tensor?

Δx 

Δy 
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Why do we need a tensor?
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The Diffusion Tensor Eigenspectrum
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Once D is estimated, we get ADCs along the 
scanner’s coordinate system. But we want 
ADCs along a local coordinate system in each 
voxel, determined by the anatomy.

Dxx

Dyy

D = [v1|v2|v3]
T

⎡

⎣

λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ [v1|v2|v3]

Diagonalize the estimated tensor in each voxel

eigenvectors - v1=direction of  
max diffusivity

eigenvalues: ADCs along v1,v2,v3

λ1v1

λ2v2



The Diffusion Tensor Ellipsoid

Isotropic voxel Anisotropic voxel

V2

V1V3

V1

V3

V2



Courtesy - Derek Jones

CSF

White matter
White matter

Grey matter

The Diffusion Tensor Ellipsoid



Quantitative Diffusion Maps

Fractional Anisotropy (FA) ~ Eigenvalues Variance (normalised) 
Mean Diffusivity (MD) = Eigenvalues Mean

CHAPTER 2: DIFFUSION MR IMAGING

orthogonal directions (Basser, 1995):

MD =
Dxx + Dyy + Dzz

3
=

�1 + �2 + �3

3
. (2.15)

The Fractional Anisotropy (FA) is the most commonly used anisotropy measure

and is a normalized expression of the variance of the tensor eigenvalues (Basser, 1995).

It is 0 for perfectly isotropic (�1 = �2 = �3) and 1 for perfectly anisotropic tensors

(�1 ⇥= 0, �2 = �3 = 0):
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Figure 2.4: Di✓usion tensor derived images, including the mean di✓usivity, the frac-
tional anisotropy and the principal tensor eigenvector. The latter is colour-coded
by orientation. As shown by the coloured sphere, superior-inferior (S-I) orientation
corresponds to blue, anterior-posterior (A-P) to green and medial-lateral (M-L) to
red.

Axial slices of the MD and FA maps are shown in Fig. 2.4. The mean diffusivity is

relatively constant within the brain parenchyma at 0.7x10�3 mm2/s. Interestingly, this

value remains roughly the same across human subjects and also across a range of other

mammalian brains (Basser and Jones, 2002). The FA values are high for white matter

and low for grey matter and CSF-filled regions. A colour-coded image of the principal

21

,        FA in [0,1]



MDFA

Quantitative Diffusion Maps



Fractional Anisotropy changes in MS normal appearing white matter

Rovaris et al, Arch Neurol 2002
Gallo et al, Arch Neurol 2005

Quantitative Diffusion Maps

FA decrease/ MD increase has been associated in many 
studies with tissue breakdown (loss of structure).



Fractional Anisotropy changes in MS normal appearing white matter

Rovaris et al, Arch Neurol 2002
Gallo et al, Arch Neurol 2005

Quantitative Diffusion Maps

FA decrease/ MD increase has been associated in many 
studies with tissue breakdown (loss of structure).

MD



Quantitative Diffusion Maps

Different scenarios can have same effect on FA, MD

Cell  
Death

Myelin 
Loss

Higher  
DensitySwelling



MDFA

Longitudinal/axial/parallel ADC 
(λ1)

Transverse/radial/perpendicular ADC 
(λ2+λ3)/2

Quantitative Diffusion Maps



FA decrease in WM can be caused: 

a) Decrease of longitudinal ADC. 
Axonal breakdown? 

b) Increase of transverse ADC. 
Myelin breakdown? 

But do not over-interpret your results. 
Always keep in mind that the DTI 
model is an oversimplification of 
reality  

Quantitative Diffusion Maps

biophysical properties



Tensor and FA in Crossing Regions

- In voxels containing two crossing bundles, FA is low and the tensor ellipsoid is 
pancake-shaped (oblate, planar tensor). 

Prolate Tensor 
λ1 >> λ2, λ3

Oblate Tensor 
λ1=λ2 >> λ3

Consequences: 

- PDD not necessarily = direction of fibres 
- FA changes difficult to interpret 



Diffusion Tensor Ellipsoids 

Fractional anisotropy

Mean diffusion



v1 map 
Principal Diffusion Direction

Estimates of Principal Fibre Orientation in WM

Assumption!! 

Direction of maximum 
diffusivity in voxels with 
anisotropic profile is an 
estimate of the major fibre 
orientation.  

Principal Diffusion 
Direction



Estimates of Principal Fibre Orientation in WM

Colour-coded v1 map



Directional contrast in DTI



TBSS :  Tract-Based Spatial Statistics

Robust “voxelwise” cross-subject stats 
on diffusion-derived measures



Voxel-wise Analysis of FA

Büchel 2004 Jones 2005

• Compute diffusion tensor
• Align all subjects’ data to standard space
• Diffusion (b0/FA) -> structural -> standard
• FA -> standard

• Do voxelwise stats (e.g. controls-patients)



VBM-style Analysis of FA
• Strengths
• Fully automated & quick
• Investigates whole brain

• Problems [Bookstein 2001, Davatzikos 2004, Jones 2005]
• Alignment difficult; smallest systematic shifts between 

groups can be incorrectly interpreted as FA change
• Needs smoothing to help with registration problems
• No objective way to choose smoothing extent



TBSS :  Tract-Based Spatial Statistics

•  Need: robust “voxelwise” cross-subject stats on DTI 
•  Problem: alignment issues confound valid local stats
•  TBSS: solve alignment using alignment-invariant features:
• Compare FA taken from tract centres (via skeletonisation)



2. Create mean FA image   (no smoothing)

1. Use medium-DoF nonlinear reg to 
pre-align all subjects’ FA

(nonlinear reg: FNIRT)



2. “Skeletonise” Mean FA



3. Threshold Mean FA Skeleton 
giving “objective” tract map



3. Threshold Mean FA Skeleton 
giving “objective” tract map



4. For each subject’s warped FA, fill each point on the 
mean-space skeleton with nearest maximum FA value 

(i.e., from the centre of the subject’s nearby tract)



5. Do cross-subject voxelwise stats on skeleton-projected FA
and Threshold, (e.g., permutation testing, including multiple 

comparison correction)



TFCE for TBSS
controls > schizophrenics

p<0.05 corrected for multiple comparisons across space, 
using randomise

cluster-based: 
cluster-forming 
threshold = 
2 or 3

TFCE



Schizophrenia (Mackay)
• TBSS & voxel-wise show reduced FA in corpus callosum & fornix 
• VBM shows spurious result in thalamus due to increased ventricles in schiz. 

        TBSS                 voxel-wise        mean FA (controls)   mean FA (schiz.)



Multiple Sclerosis (Cader, Johansen-Berg & Matthews)



TBSS - Conclusions

• Diffusion MRI measures direction and size of water diffusion in 
the brain

• Diffusion tensor (DTI) models this diffusion

• DTI summary measures (FA/MD/axial/radial) can be compared 
across subjects using TBSS

Submit your questions online



eddy and topup - tools for 
processing of diffusion data

Gaussian 
Process

Submit your questions online



Outline of the talk

• What is the problem with diffusion data?
• Off-resonance field
• How does it cause distortions?
• Where does it come from?

• Registering diffusion data
• How topup works
• How eddy works

• Practicalities
• Some results
• Quality control
• New eddy features



What is the problem with 
diffusion data?

Well, it isn’t very anatomically faithful



What is the problem with 
diffusion data?

In fact, it isn’t even internally consistent



What is the problem with 
diffusion data?

In fact, it isn’t even internally consistent



What is the problem with 
diffusion data?

In fact, it isn’t even internally consistent



Outline of the talk

• What is the problem with diffusion data?
• Off-resonance field
• How does it cause distortions?
• Where does it come from?

• Registering diffusion data
• How topup works
• How eddy works

• Practicalities
• Some results
• New eddy features



Off-resonance field ⇒ Distortions

It is all caused by an “off-resonance” field

0

-20

20

40

60

Hz

An “off-resonance” 
field is a map of 
the difference 
between what we 
think the field is 
and what it really 
is.



Off-resonance field ⇒ Distortions

But this object scanned in 
this field

Can yield this

or th
is

So there is clearly more to this story...
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Off-resonance field ⇒ Distortions

An off-resonance field is effectively a scaled voxel-displacement map.

If we know the imaging parameters we can do the translation.



And know what to expect

An off-resonance field is effectively a scaled voxel-displacement map.

If we know the imaging parameters we can do the translation.

-2

2

4

6

0

BW/voxel = 10Hz, p = [0 1 0]

Off-resonance field ⇒ Distortions
voxels



And know what to expect

So, an off-resonance field is effectively a scaled voxel-displacement map.

And if we know the imaging parameters we can do the translation.

-2.5

2.5

5

7.5

0

BW/voxel = 8Hz, p = [-1 0 0]

Off-resonance field ⇒ Distortions
voxels
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• Off-resonance field
• How does it cause distortions?
• Where does it come from?

• Registering diffusion data
• How topup works
• How eddy works

• Practicalities
• Some results
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Where does the off-resonance field 
come from?

•There are two sources
•The first is the object (head) itself.

B0

(CT of) Human head Resulting field

PPMs

∇×H = 0
∇•B = 0Must fulfil

•

(still)



Where does the off-resonance field 
come from?

•There are two sources
•The first is the object (head) itself.

•The second is caused by the diffusion gradient

Gx

Image encoding

x

x



Where does the off-resonance field 
come from?

So for any diffusion weighted volume the off-
resonance field is the sum of these two contributions

=+

Susceptibility TotalEddy currents

Diffusion gradient “True” object Observed image
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Where does the off-resonance field 
come from?

So for any diffusion weighted volume the off-
resonance field is the sum of these two contributions

=+

Susceptibility TotalEddy currents

Diffusion gradient “True” object Observed image



Where does the off-resonance field 
come from?

So for any diffusion weighted volume the off-
resonance field is the sum of these two contributions

=+

Susceptibility TotalEddy currents

Diffusion gradient “True” object Observed image



Separate estimation of susceptibility- 
and eddy current-fields

So, what we need to estimate is
One of these per 

subject
One of these per 

volume

FSL-tools: topup eddy
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How topup works (very briefly)

p=[0 1 0]

p=[0 -1 0]

Given two images acquired with 
different phase-encoding



How topup works (very briefly)

p=[0 1 0]

p=[0 -1 0]

topup “guesses” a field...



How topup works (very briefly)

p=[0 1 0]

p=[0 -1 0]

...calculates the displacement maps...



How topup works (very briefly)

p=[0 1 0]

p=[0 -1 0]

...”corrects” the images...



How topup works (very briefly)

p=[0 1 0]

p=[0 -1 0]

...and evaluates the results... 
And this is the crucial bit.

BAD!

-



How topup works (very briefly)

p=[0 1 0]

p=[0 -1 0]

Because topup can then “guess” 
another field

better

-



How topup works (very briefly)

p=[0 1 0]

p=[0 -1 0]

...and another...until it is happy,  
and then it “knows” the field

even 
better

-
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But it is not easy to register 
diffusion weighted images

• Each image has different 
distortions -> non-linear 
registration 

• What is the reference image?



Gaussian 
Process

Zoltar -- The prediction maker

[-.6 -.4 .7]
[-.4 .9 0]

[.8 .6 0]
[1 0 0]

... Data in Prediction 
out

[1 0 0]

≠
Data Prediction

[1 0 0] [1 0 0]

Given some data in, Zoltar 
will make a prediction what 

the data “should” be.

The prediction for a given 
dwi will not be identical to 

the “input” for that dwi

I know this sounds crazy, but please trust me on this.  
(Zoltar is actually a Gaussian Process)
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How eddy works: Loading step

Pick the first dwi

Use current estimates of 
Susc EC MP

To correct 
image

Gaussian 
Process

And load into 
prediction 

maker
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How eddy works: Loading step

then the 2nd dwi

Use current estimates of 
Susc EC MP

To correct 
2nd image

Gaussian 
Process

And load into 
prediction 

maker

Until we have 
loaded all dwis
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How eddy works: Estimation step

Susc EC MP

Gaussian 
Process

Draw a prediction 
for first dwi

Use current estimates of 

To get 
prediction in 
“observation 

space”

}
Invert

And compare 
to actual 

observation
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How eddy works: Estimation step

Susc EC MP

Gaussian 
Process

Draw a prediction 
for 2nd dwi

Use current estimates of }
Invert

And then we repeat 
the procedure for the 

next dwi ...



Gaussian 
Process

[1 0 0] [.6 -.4 -.7] [.8 .6 0] [-.4 .9 0]

...

For all scans

Use susceptibility 
field and current 

estimate of EC and 
movement to 

“unwarp” scan
ECtopup

�

����

0.2
0.6
...

0.1

�

����

mp

Load into prediction maker

1. 2.

Gaussian 
Process

ECtopup

�

����

0.2
0.6
...

0.1

�

����

mp

[1 0 0]

[1 0 0]

For all scans

Get prediction

Invert current 
transform

[1 0 0]

Get prediction 
in scan space

Compare to scan

Use 
difference 
to update 

EC and mp

How eddy works



Under the hood of Zoltar

x-component of diffusion gradient

y-
co

m
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nt
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f d

iff
us
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nt

z-component

Data point

Prediction

The signal is “modelled” in a data-driven fashion assuming that 
points close together on the unit sphere have similar signal. 



Under the hood of Zoltar

The GP can model voxels with 
complicated anatomy while still 

being computationally convenient.

Multi-shell 
predictionsTensor

Gaussian 
Process

Shells with strong signal 
can help inform 

predictions in shells with 
poor signal
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Practicalities

...
ν

...
ν

•Our example data consists of:
•N diffusion weighted volumes and n b=0 volumes
•b=0 volumes interspersed
•Two repetitions, phase-encode L→R and R→L
•Same diffusion table for both repetitions



Practicalities

...

...
ν

ν

Affected by susceptibility distortions



Practicalities

...

...
ν

ν

Affected by susceptibility distortions  
AND eddy current distortions

...

And everything is of course affected by subject 
movement.



So, let’s start with susceptibility

...

...
ν

ν

Extract the/some b=0 
volumes using fslroi



So, let’s start with susceptibility

...

...
ν

ν

Collect the b=0 volumes 
into a single file using 

fslmerge

And let’s call it for 
example my_b0s



And the tool for that is topup

my_b0s

νν ν νtopup --imain=my_b0s

But we also need to inform topup 
about the acquisition parameters



And the tool for that is topup

my_b0s

νν ν ν

topup --imain=my_b0s

-1 0 0 0.051

Means PE in x-direction, L→R

Total readout time  
(in seconds)



And the tool for that is topup

my_b0s

νν ν ν

topup --imain=my_b0s --datain=acqparams.txt

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

Text file that we can 
call for example 
acqparams.txt



And the tool for that is topup

my_b0s

νν ν ν

topup --imain=my_b0s --datain=acqparams.txt --config=b02b0.cnf

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

And then some 
technical details



And the tool for that is topup

my_b0s

νν ν ν

topup --imain=my_b0s --datain=acqparams.txt --config=b02b0.cnf --out=my_topup

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

And finally we need to tell 
it where to put the results

b02b0.cnf

my_topup_movpar.txt
0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

Tells position of 2nd b=0 
scan relative the first



And the tool for that is topup

my_b0s

νν ν ν

topup --imain=my_b0s --datain=acqparams.txt --config=b02b0.cnf --out=my_topup

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

And finally we need to tell 
it where to put the results

b02b0.cnf

my_topup_fieldcoef.nii my_topup_movpar.txt
0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004



Back to the full data-set

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

my_topup_fieldcoef.nii

my_topup_movpar.txt

0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

...
ν

...
ν

Now we want to correct the eddy current-distortions 
and subject movement in the whole data set.



Collect all data in one file

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

my_topup_fieldcoef.nii

my_topup_movpar.txt

0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

...

ν

...

ν

The first thing we do is to collect all data in a single 
file using fslmerge and call it for example LR_RL

LR_RL



Inform eddy of acquisition parameters

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

my_topup_fieldcoef.nii

my_topup_movpar.txt

0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

...

ν
...

ν

LR_RL1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2   ...    3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4  ...

Then we make a text file with one index for each 
volume, and call it for example indx.txt

indx.txt



-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

my_topup_fieldcoef.nii

my_topup_movpar.txt

0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

...

ν
...

ν

LR_RL1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2   ...    3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4  ...indx.txt

By referring into acqparams.txt 
this file specifies how every 

volume was acquired

Inform eddy of acquisition parameters



-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

my_topup_fieldcoef.nii

my_topup_movpar.txt

0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

...

ν
...

ν

LR_RL1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2   ...    3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4  ...indx.txt
And by referring into 

my_topup_movpar.txt it 
gives a starting guess for the 

relative subject position for each 
volume

Inform eddy of acquisition parameters



And of diffusion parameters

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

my_topup_fieldcoef.nii

my_topup_movpar.txt

0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

...

ν
...

ν

LR_RL

And we also need to know the b-value and b-vector 
for each volume (same as for dtifit or bedpost).

indx.txt
1111...

0 1000 1000 1000  ...
...

bvals
bvecs text-files



And where the brain is

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

my_topup_fieldcoef.nii

my_topup_movpar.txt

0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

...

ν
...

ν

LR_RL

And finally a binary mask that tells eddy which voxels are 
brain. Also the same that is used for dtifit/bedpost.

indx.txt
1111...

0 1000 1000 1000 ...

...
bvals

bvecs

brain_mask.nii



And now we can run eddy

-1 0 0 0.051
-1 0 0 0.051
1 0 0 0.051
1 0 0 0.051

acqparams.txt

my_topup_fieldcoef.nii

my_topup_movpar.txt

0 0 0 0 0 0
0.72 -0.02 -0.07 0.002 0.000 0.002
0 -0.11 -0.33 0.002 0.013 -0.004
-0.70 -0.12 -0.43 0.002 0.014 -0.004

...
ν

...
ν

LR_RL

And now we are ready for the most horrible command line 
in all of fsl

indx.txt
1111...

0 1000 1000 1000 ...

...
bvals

bvecs

brain_mask.nii

--imain=LR_RL --acqp=acqparams.txt
--index=indx.txt --bvecs=bvecs
--bvals=bvals --mask=brain_mask
--topup=my_topup --out=my_eddy

eddy



Outline of the talk

• What is the problem with diffusion data?
• Off-resonance field
• How does it cause distortions?
• Where does it come from?

• Registering diffusion data
• How topup works
• How eddy works

• Practicalities
• Some results
• Quality control
• New eddy features



HCP-data, 150 directions, 
b=3000, blip-up-blip-down



MGH-data, 198 directions, 
b=10000!



MGH-data, 198 directions, 
b=10000!
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EDDY QC: data quality summary

S1/qc.json
S2/qc.json
S3/qc.json

.

.

.
Sn/qc.json

aSQUAD
(study)

qc_group.pdf

qc_group.json
}

P1/qc.json
P2/qc.json
P3/qc.json

…

aQUAD
(subject)



EDDY QC: single-subject reports



EDDY QC: group report



Data quality illustration
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Movement induced dropout

Gd

RF

Diffusion encoding Image encoding

Gx

Gy

…

If there is movement 
during this part…

this can turn 
to this

or this to this



What can eddy do about it? 
But first a little recap of eddy

Gaussian 
Process

[1 0 0] [.6 -.4 -.7] [.8 .6 0] [-.4 .9 0]

...

For all scans

Use susceptibility 
field and current 

estimate of EC and 
movement to 

“unwarp” scan
ECtopup

�

����

0.2
0.6
...

0.1

�

����

mp

Load into prediction maker

1. 2.

Gaussian 
Process

ECtopup

�

����

0.2
0.6
...

0.1

�

����

mp

[1 0 0]

[1 0 0]

For all scans

Get prediction

Invert current 
transform

[1 0 0]

Get prediction 
in scan space

Compare to scan

Use 
difference 
to update 

EC and mp



x = 0.084 x = �0.791 x = �0.125

Outlier detection

Remember that we 
do all comparisons in 
observation space.

Observed data

Observed data

Observed - predicted

This allows us to calculate the per-slice mean 
difference between observation and prediction



Outlier detection
Observed data

We can calculate the 
mean difference for every 
slice in every volume and 

get an empirical 
distribution that we can 

convert to z-scores

(Arbitrary) 
definition of 

outlier

Worst slice

We can define an outlier slice as one with a 
z-score above an (arbitrary) threshold. We 

then have a choice of reporting outliers 
and/or replacing them with their predictions.  



eddy revisited

Gaussian 
Process

[1 0 0] [.6 -.4 -.7] [.8 .6 0] [-.4 .9 0]

...

For all scans

Use susceptibility 
field and current 

estimate of EC and 
movement to 

“unwarp” scan
ECtopup

�

����

0.2
0.6
...

0.1

�

����

mp

Load into prediction maker

1. 2.

Gaussian 
Process

ECtopup

�

����

0.2
0.6
...

0.1

�

����

mp

[1 0 0]

[1 0 0]

For all scans

Get prediction

Invert current 
transform

[1 0 0]

Get prediction 
in scan space

Compare to scan

Use 
difference 
to update 

EC, mp and 
outlier list



Norwegian data. 32 directions.
Hundreds of children.

Eight year 
old who gets 
tired towards 

the end of 
scanning

After outlier 
detection 

and 
replacement 

by eddy
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Intra-volume movement

One of the (possibly naive) assumptions of most movement 
correction is that any movement is instantaneous and 

occurs between the acquisition of consecutive volumes.

This is the brain 
we set out to 

image



Intra-volume movement

One of the (possibly naive) assumptions of most movement 
correction is that any movement is instantaneous and 

occurs between the acquisition of consecutive volumes.

This is the brain 
we set out to 

image

And here we have 
acquired the first 

slice



Intra-volume movement

One of the (possibly naive) assumptions of most movement 
correction is that any movement is instantaneous and 

occurs between the acquisition of consecutive volumes.

This is the brain 
we set out to 

image

But the subject moves

So the brain is 
offset in the 
second slice



Intra-volume movement

One of the (possibly naive) assumptions of most movement 
correction is that any movement is instantaneous and 

occurs between the acquisition of consecutive volumes.

But the subject moves

This is the brain 
we set out to 

image

And even more so 
in the third slice



Intra-volume movement

One of the (possibly naive) assumptions of most movement 
correction is that any movement is instantaneous and 

occurs between the acquisition of consecutive volumes.

But the subject moves

This is the brain 
we set out to 

image

And more …



Intra-volume movement

One of the (possibly naive) assumptions of most movement 
correction is that any movement is instantaneous and 

occurs between the acquisition of consecutive volumes.

But the subject moves

This is the brain 
we set out to 

image

… and more …



Intra-volume movement

One of the (possibly naive) assumptions of most movement 
correction is that any movement is instantaneous and 

occurs between the acquisition of consecutive volumes.

This is the brain 
we set out to 

image

etc.



Intra-volume movement

• This is known as the “slice-to-vol” problem or the “intra-
volume movement” problem. 

• The new version of eddy addresses this problem. 
• It estimates the slice wise movement through the same 
Gaussian Process based forward model. 

tn=15
tn=16

tn=17
tn=18

x’=R(r(15))x

x’=R(r(18))x



Intra-volume movement

Problematic elderly subject. Lots of movement 
induced signal loss and intravolume movement

Original data



Intra-volume movement

Problematic elderly subject. Lots of movement 
induced signal loss and intravolume movement

Original data After correction 
without outlier 

correction



Intra-volume movement

Problematic elderly subject. Lots of movement 
induced signal loss and intravolume movement

Original data After correction 
without outlier 

correction

After correction 
with outlier 

replacement



Intra-volume movement

Problematic elderly subject. Lots of movement 
induced signal loss and intravolume movement

Original data After correction 
without outlier 

correction

After correction 
with outlier 

replacement

After 
intravolume 
movement 
correction.



Intra-volume movement

Problematic elderly subject. Lots of movement 
induced signal loss and intravolume movement

Highlighting the difference between just OLR 
and OLR combined with S2V correction


