

Network modelling analysis

- Resting state data characteristics
- Preprocessing
- Network modelling analysis
- Methods comparisons and considerations \bullet

Data characteristics

Replicable networks

Large-scale inherent organisation is reproducibly found across studies and approaches

Damoiseaux et al (2006)

50%

Grey matter networks

Resting state network structure is localised in grey matter

Relationship to task

Resting state networks are similar to task activation patterns at group and single subject level

Smith et al (2009), Tavor et al (2016)

Functional vs structural connectivity

Functional connectivity is related to structural connectivity

Honey et al (2009), Damoiseaux & Greicius (2009)

Low frequency fluctuations?

Low frequency fluctuations?

- BOLD decreases as 1/f
- Degrees of freedom increase as sqrt(f)

Low frequency fluctuations?

- BOLD decreases as 1/f
- Degrees of freedom increase as sqrt(f)
- Combined effect contributes to RSN estimation across frequency range!

Static versus dynamic connectivity

- Most connectivity measures are static (based on the full resting state scan)
- Dynamic connectivity is like to occur (changes) over time)
- Static connectivity measures reflect average across dynamic states
- Dynamic connectivity measures are challenging (in terms of noise influences, significance testing)

Allen et al (2012), Hutchison et al (2013)

Dynamic connectivity

- Subjects fall asleep
- Changes in BOLD amplitude
- Related changes in correlation

Tagliazucchi and Laufs (2014), Horovitz et al (2008), Bijsterbosch et al (2017), Raul et al (2021)

Arousal

Preprocessing

Careful cleanup required

- Structured artefacts much more of a problem for rfMRI than task-fMRI
 - No model of expected activation
 - Instead based on correlating timeseries with each other

Low motion > high motion

Van Dijk et al (2012)

- Head motion
- Cardiac & breathing cycles
- Scanner artefacts

Noise sources

Preprocessing overview

Conventional

Motion & distortion correction

High pass temporal filtering

Registration

Noise reduction step

Nuisance regression

Volume censoring

ICA-based clean-up

Physiological noise regression

I preprocessing steps	
۱	Slice timing correction
	Spatial smoothing
ps (use at least one of these)	
	Low pass temporal filtering
	Global signal regression

Regressing out noise

- Head motion parameters
- White-matter / CSF
- Use GLM to remove nuisance timeseries
- Perform analysis on residuals
- "CompCor" method (PCA-based)

Muschelli et al (2014)

Xrotation Yrotation Zrotation Xtranslation Ytranslation Ztranslation CSF WM

Lowpass temporal filtering

- E.g., common to remove frequencies > 0.1Hz
- May remove useful signal
- Not guaranteed to remove much artefact

Original BOLD data

Am Marine Marine

Highpass filtered data (>0.01 Hz)

Bandpass filtered data (0.01 - 0.1 Hz)

Global signal regression

- Regress out mean timeseries across all voxels (or all grey matter voxels)
- Shifts connectivity values to be zero mean
- Therefore, more negative correlations
- Not necessary if using partial correlation

Murphy et al (2009)

Histogram of Correlation Values (Without Global Signal Regression)

GSR effects & alternative

Glasser et al (2018)

no additional correction

24RP-regression

24RP + volume censoring

ICA-AROMA

Clean-up comparison

Ciric et al (2017)

Clean-up comparison

Estimated loss of temporal degrees of freedom: Mean regressors in model

Full regressors Partial regressors **Excised** volumes

Preprocessing advice

- Read up on the latest literature
- Nuisance regression is not enough
- Low-pass filtering is not enough & often not necessary when using other approaches
- Use ICA-based methods and/or volume censoring
- Use physiological noise regression when interested in brainstem or other vulnerable brain regions
- Don't use global signal regression (or if you must, show results with and without to asses GSR's impact)

Data acquisition advice

- Just a guide, may vary depending on study aims!
- Whole brain coverage, voxelsize: 2 3 mm
- Scan duration:
 - 15-20 minutes per scan
 - Potentially multiple scans
- Repetition time: ideally close to 1 second (multiband/ multiplexed imaging)
- Paradigm: eyes open, fixation cross
- Auxiliary data: physiology, sleep

Analysis method advice

- Don't do the same thing that your lab always does without further consideration
- Do think about your study and hypotheses
 - Brain areas will inform spatial summary
 - Expected change will inform feature type
- Ok to test multiple dimensionalities (e.g., ICA) without looking at final statistical results
- If possible, compare results across multiple brain representations

Resting state big picture

The many options of resting state

Even more choices...

•How to define the nodes?

- •Schaefer, Glasser, Gordon, Power, [...]
- •Data driven, task localizer, [...]

•How many nodes?

- •10, 100, 1000, [...]
- •Combining bilateral, combining modules, [...]

•How to calculate the edges?

- •Pearson, partial correlation, covariance, [...]
- •Regularization, tangent projection, [...]
- •How to relate edges to question of interest?
 - •Mass univariate, prediction, normative modeling, [...]
 - •Multiple comparison correction, network statistics, [...]

Why more than one tool?

"Brain representations"

Bijsterbosch et al (2020)

Why more than one tool?

"Brain representations"

Bijsterbosch et al (2020)

Which tool to use?

What parts of the brain are interesting in your study?

What type of change do you expect (e.g., strength/ shape/ connection)?

How much power do you have?

ICA + dual regression (Melodic) **Yesterday**

Probabilistic Modes (PROFUMO) **Tomorrow**

Options within FSL

Network modeling (FSLnets) Today

Time for a break!

Network modelling analysis

Glossary

- Node = functional brain region
 - Contiguous nodes = interconnected 'blobs'
 - Non-contiguous nodes = e.g. bilateral
- Parcellation = separation of all voxels into a set of nodes
 - Hard parcellation = binary regions
 - Soft parcellation = weighted regions
- Edge = connection between nodes
- Connectomics = mapping all connections between all brain regions

Analysis steps

- Node definition
- Timeseries extraction
- Edge calculation
- Network matrix
- Group analysis

Node definition

Anatomical atlases

Functional atlases

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

Data-driven parcellation

Node definition

Anatomical atlases

- Harvard-Oxford/ AAL
- Avoid if possible because typically based on small number of subjects and not a good estimation of functional boundaries

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

Functional atlases

Data-driven parcellation

Node definition

Anatomical atlases

Functional atlases

- Harvard-Oxford/ AAL
- Avoid if possible because typically based on small number of subjects and not a good estimation of functional boundaries

- How to map onto individuals is very important

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

Data-driven parcellation

Yeo 2011/ Glasser 2016 Many good functional atlases available, though few comparison studies

Node definition

Anatomical atlases

Functional atlases

- Harvard-Oxford/ AAL
- Avoid if possible because typically based on small number of subjects and not a good estimation of functional boundaries

- How to map onto individuals is very important

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

Yeo 2011/ Glasser 2016 Many good functional atlases available, though few comparison studies

Data-driven parcellation

- ICA/ Clustering/ Gradients
- Estimate parcellation from ulletthe same dataset used for further analyses
- How to map group parcellation onto individuals very important

ICA for parcellation

Timeseries extraction

Hard parcellation:

- Masking (mean timeseries)
- Eigen timeseries (PCA)
- Using multilayer classifier

ICA (soft parcellation):

Dual regression/ back projection \bullet

Alternative:

- Hierarchical estimation of group & subject
- e.g. PROFUMO

Hacker et al (2013), Fillippini et al (2009), Calhoun et al (2001), Harrison et al (2015), Bijsterbosch et al (2019)

Edge calculation

Presence/ absence of edges

Strength of edges

• Directionality of edges

Direct versus indirect connections

- Correlation between 2 and 3 will exist
- Therefore full correlation will incorrectly estimate connection 2-3
- 2-3 is an indirect connection

Partial correlation

- Before correlating 2 and 3, first regress 1 out of both ("orthogonalise wrt 1")
 If 2 and 3 are still correlated a direct
 - If 2 and 3 are still correlated, a direct connection exists
- More generally, first regress all other nodes' timecourses out of the pair in question
 - Equivalent to the inverse covariance matrix

Regularisation

- Urgh! If you have 200 nodes and 100 timepoints, this is impossible!
- A problem of DoF need large #timepoints #nodes
- When inverting a "rank-deficient" matrix it is common to aid this with some mathematical conditioning, e.g. force it to be sparse (force low values that are poorly estimated to zero)
- Regularised partial correlation (such as ICOV, Ridge)
- But still important to maximise temporal degrees of freedom

Need to carefully define nodes

Berkson's paradox = false positive (2-3)

Over-splitting = false negative (1-2)

Directionality of edges

- Directionality is hard to estimate in BOLD data
- Don't use lag-based methods such as Granger causality
- Perhaps directionality is oversimplistic view of neural connectivity (particularly in resting-state)?

Smith et al (2011)

Building a network matrix

Network matrix

I 2 3 4 5 6 7 8 9 IO II I2 I3 I4 I5 I6 I7 I8 I9 20

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

Hierarchical clustering

Partial correlation is sparser than full

9 40 21 27 44 8 32 37 14 43 7 20 38 16 28 26 25 36 11 19 22 45 1 23 2 24 10 41 29 33 4 31 3 6 12 30 5 15 13 17 42 34 35 18 39

Full correlation matrix

Partial correlation matrix

Group analysis

- Calculate network matrix for each subject
- Combine all network matrices into one
- Perform group-level comparisons:

Multivariate prediction methods (SVM)

Python tool

This practical will be a bit different from other practicals

FSLnets

Example: positive-negative mode

Smith et al (2015)

Example: connectivity fingerprint

Finn et al (2015)

Comparison of methods

Overview of resting state methods

Voxel-based

- Seed-based correlation analysis
- Independent component analysis
- Amplitude of low frequency fluctuations
- Regional homogeneity

Node-based

- Network modelling analysis
- Graph theory analysis
- Dynamic causal modelling
- Non-stationary methods

Seed-based correlation

- Easy to interpret
- No correspondence problem
- Seed-selection bias
- Only models seed-effect (ignoring complex structure & noise)

Seed-selection bias

Seed-based correlation results are strongly influenced by small changes is seed location

Cole et al (2010)

- Multivariate: decompose full dataset
- Test for shape & amplitude
- Can be hard to interpret
- No control over decomposition (may not get breakdown you want)

ICA

Graph theory

- Simple summary measures (derived from network matrix)
- Network matrix often binarised
- Difficult to meaningfully interpret (abstract and far removed from data)

Rubinov et al (2010)

Dynamic causal modelling

- Directional interpretation (effective connectivity)
- Biophysical model
- Assumes HRF homogeneity
- Limited model comparisons

Daunizeau et al (2011)

Overview of node-based methods

clusters / hierarchies, network hubs, network summary statistics (e.g. small-worldness, efficiency)

network modelling from FMRI data

effective connectivity

more complex, more meaningful, pre-specify (constrain) network model, harder to estimate, can handle fewer nodes

bottom-up neural network simulations

network of individual neurons simulated

closeness to (interaction with) real FMRI data network of groups of neurons simulated (e.g. neural mass model)

graph theory

Which method to chose?

That's all folks

