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Data characteristics



Replicable networks

Damoiseaux et al (2006)

Large-scale inherent 
organisation is reproducibly 
found across studies and 
approaches



Grey matter networks

Resting state network structure 
is localised in grey matter



Relationship to task

Smith et al (2009), Tavor et al (2016)

Rest  Task Rest  Task Rest  Task Rest  Task Rest  Task 

Resting state networks are similar to task activation 
patterns at group and single subject level



Functional vs structural connectivity

Honey et al (2009), Damoiseaux & Greicius (2009)

Functional connectivity is related to 
structural connectivity



Low frequency fluctuations?
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Low frequency fluctuations?

• BOLD decreases as 1/f 

• Degrees of freedom increase as 
sqrt(f)
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• BOLD decreases as 1/f 

• Degrees of freedom increase as 
sqrt(f)


• Combined effect contributes to RSN 
estimation across frequency range!



Static versus dynamic connectivity

• Most connectivity measures are static (based on 
the full resting state scan)


• Dynamic connectivity is like to occur (changes 
over time)


• Static connectivity measures reflect average 
across dynamic states


• Dynamic connectivity measures are challenging 
(in terms of noise influences, significance testing) 

Static connectivity

Dynamic connectivity

Allen et al (2012), Hutchison et al (2013)



Arousal

0.05   p   <0.0001

Tagliazucchi and Laufs (2014), Horovitz et al (2008), Bijsterbosch et al (2017), Raul et al (2021)

• Subjects fall asleep


• Changes in BOLD amplitude


• Related changes in correlation



Preprocessing



Careful cleanup required

• Structured artefacts much more of a problem for 
rfMRI than task-fMRI


• No model of expected activation


• Instead based on correlating timeseries with 
each other

Low motion > high motion

Van Dijk et al (2012)



Noise sources

• Head motion


• Cardiac & breathing cycles


• Scanner artefacts



Preprocessing overview



Regressing out noise

• Head motion parameters


• White-matter / CSF


• Use GLM to remove nuisance 
timeseries


• Perform analysis on residuals


• “CompCor” method (PCA-based)

Muschelli et al (2014)
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Lowpass temporal filtering

• E.g., common to remove 
frequencies > 0.1Hz


• May remove useful signal


• Not guaranteed to remove much 
artefact



Global signal regression

• Regress out mean timeseries across all voxels 
(or all grey matter voxels)


• Shifts connectivity values to be zero mean


• Therefore, more negative correlations 


• Not necessary if using partial correlation

Murphy et al (2009)



GSR effects & alternative

Glasser et al (2018)

PCC correlation 
spatial ICA cleanup

PCC correlation  
spatial ICA cleanup + GSR

PCC correlation  
spatial ICA cleanup + temporal ICA cleanup



Clean-up comparison

no additional correction

24RP-regression

24RP + volume censoring

ICA-AROMA

DVARSFMRI data



Clean-up comparison

Ciric et al (2017)



Preprocessing advice
• Read up on the latest literature


• Nuisance regression is not enough


• Low-pass filtering is not enough & often not necessary when using other 
approaches


• Use ICA-based methods and/or volume censoring


• Use physiological noise regression when interested in brainstem or other 
vulnerable brain regions


• Don’t use global signal regression (or if you must, show results with and 
without to asses GSR’s impact)



Data acquisition advice
• Just a guide, may vary depending on study aims!


• Whole brain coverage, voxelsize: 2 - 3 mm


• Scan duration: 


• 15-20 minutes per scan 


• Potentially multiple scans


• Repetition time: ideally close to 1 second 
(multiband/ multiplexed imaging)


• Paradigm: eyes open, fixation cross


• Auxiliary data: physiology, sleep



Analysis method advice
• Don’t do the same thing that your lab always does 

without further consideration


• Do think about your study and hypotheses


• Brain areas will inform spatial summary


• Expected change will inform feature type  


• Ok to test multiple dimensionalities (e.g., ICA) 
without looking at final statistical results


• If possible, compare results across multiple brain 
representations



Resting state big picture



The many options of resting state



Even more choices…
•How to define the nodes?
•Schaefer, Glasser, Gordon, Power, […]
•Data driven, task localizer, […]

•How many nodes?
•10, 100, 1000, […]
•Combining bilateral, combining modules, […]

•How to calculate the edges?
•Pearson, partial correlation, covariance, […]
•Regularization, tangent projection, […]

•How to relate edges to question of interest?
•Mass univariate, prediction, normative modeling, […]
•Multiple comparison correction, network statistics, […]



Why more than one tool?

Bijsterbosch et al (2020)

“Brain representations”



Why more than one tool?

Bijsterbosch et al (2020)

“Brain representations”
Which tool to use? 

What parts of the brain are 
interesting in your study?


What type of change do you 
expect (e.g., strength/ shape/ 

connection)?


How much power do you have? 



Options within FSL

ICA + dual regression 
(Melodic) 
Yesterday

Network modeling 
(FSLnets) 

Today

Probabilistic Modes 
(PROFUMO) 
Tomorrow



Time for a break!



Network modelling analysis



Glossary
• Node = functional brain region


• Contiguous nodes = interconnected ‘blobs’


• Non-contiguous nodes = e.g. bilateral


• Parcellation = separation of all voxels into a set of nodes


• Hard parcellation = binary regions


• Soft parcellation = weighted regions


• Edge = connection between nodes


• Connectomics = mapping all connections between all 
brain regions



Analysis steps

• Node definition


• Timeseries extraction


• Edge calculation


• Network matrix


• Group analysis



Node definition
Anatomical atlases
 Functional atlases
 Data-driven parcellation


Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

optimal thresholding strategy in the current algorithm but it may also
represent a lack of differentiation between functional areas based on
resting functional connectivity. If two neighboring functional areas
have similar connectivity profiles, the eta2 coefficient between maps
in the two areas will be high, and such boundaries may not be
detected by our current methods. Thus, convergence across methods
and a combination of different approaches may be needed to
elucidate the entire set of cortical functional areas.

Boundaries generated from adjacent cortical surface patches yield
consistent results

Since the edge consistency map is derived from the correlation
maps for a particular set of cortical loci, it is conceivable that the
resultant pattern is specific to the chosen patch and is unrelated to
cortical areal boundaries. We assessed this possibility by analyzing
two additional patches, or sets of cortical seed points. First, a patch of
dorso-medial cortex adjacent to that used above (blue box, Figs. 6A
and B) was analyzed to test whether an independent data set would
show continuity with the pattern of edge locations seen previously.
Second, an overlapping patch corresponding to half of the original
data set and half of the new independent data set (green box, Figs. 6A
and C) was used. The same edge detection analyses were applied to
both new sets to find putative edge locations.

As seen in Fig. 6B, edge consistency maps generated using a
completely separate but adjacent set of seed point sets reveal
consistent edges that align with one another. When superimposing
the edge maps from two independent or overlapping patches onto
the same surface, considerable consistency is noted, including the
continuous boundaries marked with arrows in Figs. 6B and C.
These results provide qualitative evidence that our approach can
consistently identify boundary contours across the cortex in a
single human subject.

Generating boundaries allows automatic definition of putative
functional areas

Since the edge consistency maps show continuity across
extended regions of cortex, it should be possible to group contiguous
seed points surrounded by putative edges into putative functional
areas, using existing image segmentation algorithms. A watershed
segmentation algorithm (Vincent and Soille, 1991) was applied to
the edge consistency map. Fig. 7 demonstrates the progression from
edges (panel A) to bounded and labeled “areas” (panel C).

Using a putative edge map, a patch of cortex can be segmented
into several bounded and partially bounded areas by a watershed
algorithm. This suggests that rs-fcMRI derived putative edges and
standard imaging segmentation methods should allow parcellation
of an individual's cortical surface into putative functional areas.
While these bounded areas may in some cases represent only a part
of one or more than one functional area, it allows for the generation
of ROIs that can be validated using complementary methods.

Discussion

Imaging and functional areas

Since the mid 1980s, functional neuroimaging has facilitated
progress in cognitive neuroscience—the study of neural substrates
underlying mental processes and behavior. Typically, functional

Fig. 7. Panel A shows the rs-fcMRI derived boundaries generated above.
Applying a watershed image segmentation algorithm parses the patch into
contiguous non-overlapping regions least likely to be edges (i.e., most likely
to be areas) shown in panel B, which can then be individually identified and
labeled for investigation and validation as shown in panel C.

53A.L. Cohen et al. / NeuroImage 41 (2008) 45–57



Node definition
Anatomical atlases


• Harvard-Oxford/ AAL

• Avoid if possible because 

typically based on small 
number of subjects and 
not a good estimation of 
functional boundaries

Functional atlases
 Data-driven parcellation


Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)
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Node definition
Anatomical atlases


• Harvard-Oxford/ AAL

• Avoid if possible because 

typically based on small 
number of subjects and 
not a good estimation of 
functional boundaries

Functional atlases


• Yeo 2011/ Glasser 2016

• Many good functional 

atlases available, though 
few comparison studies


• How to map onto 
individuals is very 
important

Data-driven parcellation
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Node definition
Anatomical atlases


• Harvard-Oxford/ AAL

• Avoid if possible because 

typically based on small 
number of subjects and 
not a good estimation of 
functional boundaries

Functional atlases


• Yeo 2011/ Glasser 2016

• Many good functional 

atlases available, though 
few comparison studies


• How to map onto 
individuals is very 
important

Data-driven parcellation


• ICA/ Clustering/ Gradients

• Estimate parcellation from 

the same dataset used for 
further analyses


• How to map group 
parcellation onto individuals 
very important

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)
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ICA for parcellation



Timeseries extraction
Hard parcellation:


• Masking (mean timeseries)


• Eigen timeseries (PCA) 


• Using multilayer classifier


ICA (soft parcellation):


• Dual regression/ back projection


Alternative: 


• Hierarchical estimation of group & subject 


• e.g. PROFUMO
Hacker et al (2013) , Fillippini et al (2009), Calhoun et al (2001), Harrison et al (2015), Bijsterbosch et al (2019)



Edge calculation

• Presence/ absence of edges


• Strength of edges


• Directionality of edges

1

2 3

1

2 3

1

2 3



Direct versus indirect connections

• Correlation between 2 and 3 will exist


• Therefore full correlation will 
incorrectly estimate connection 2-3


• 2-3 is an indirect connection

1

2 3

1

2 3

Truth

Full correlation



Partial correlation

• Before correlating 2 and 3, first regress 1 
out of both (“orthogonalise wrt 1”)


• If 2 and 3 are still correlated, a direct 
connection exists


• More generally, first regress all other nodes’ 
timecourses out of the pair in question


• Equivalent to the inverse covariance 
matrix

1

2 3Partial correlation

1

2 3
Full correlation



Regularisation

• Urgh!  If you have 200 nodes and 100 timepoints, this is impossible!


• A problem of DoF - need large #timepoints - #nodes 


• When inverting a “rank-deficient” matrix it is common to aid this with 
some mathematical conditioning, e.g. force it to be sparse (force low 
values that are poorly estimated to zero)


• Regularised partial correlation (such as ICOV, Ridge)


• But still important to maximise temporal degrees of freedom



Need to carefully define nodes

Berkson’s paradox = false positive (2-3)                Over-splitting = false negative (1-2)

1

2 3

1

3

Truth

Partial correlation
2
a

2
b

1

2 3

1

2 3

Truth

Partial correlation



Directionality of edges
• Directionality is hard to estimate in BOLD data


• Don’t use lag-based methods such as Granger causality


• Perhaps directionality is oversimplistic view of neural connectivity 
(particularly in resting-state)?

Smith et al (2011)



Building a network matrix

x

i

j

i j



Network matrix

51 42 3 86 7 109 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45



Hierarchical clustering

35344217131553012633143329411024223145221911362526281638207431437328442721409 18 39



Partial correlation is sparser than full

35344217131553012633143329411024223145221911362526281638207431437328442721409 18 39

Partial 
correlation 

matrix

Full 
correlation 

matrix



Group analysis
• Calculate network matrix for each 

subject


• Combine all network matrices 
into one


• Perform group-level comparisons:


• Univariate tests for each edge 
(GLM)


• Multivariate prediction methods 
(SVM)



FSLnets

• Python tool


• This practical will be a bit different from other practicals   



Example: positive-negative mode

Smith et al (2015)



Example: connectivity fingerprint

Finn et al (2015)



Comparison of methods



Overview of resting state methods

Voxel-based 

• Seed-based correlation analysis


• Independent component analysis


• Amplitude of low frequency 
fluctuations


• Regional homogeneity

Node-based 

• Network modelling analysis


• Graph theory analysis


• Dynamic causal modelling


• Non-stationary methods



Seed-based correlation

• Easy to interpret


• No correspondence problem


• Seed-selection bias


• Only models seed-effect 
(ignoring complex structure & 
noise)



Seed-selection bias

Cole et al (2010)

Seed-based correlation 
results are strongly 
influenced by small 

changes is seed location



ICA

• Multivariate: decompose full dataset


• Test for shape & amplitude


• Can be hard to interpret 


• No control over decomposition (may not 
get breakdown you want)



Graph theory

• Simple summary measures 
(derived from network 
matrix)


• Network matrix often 
binarised


• Difficult to meaningfully 
interpret (abstract and far 
removed from data)

Rubinov et al (2010)



Dynamic causal modelling

• Directional interpretation (effective connectivity)


• Biophysical model


• Assumes HRF homogeneity


• Limited model comparisons

Daunizeau et al (2011)



Overview of node-based methods

effective connectivity
more complex,   more meaningful,

pre-specify (constrain) network model,
harder to estimate,

can handle fewer nodes

closeness to (interaction with) real FMRI data

full correlation

partial correlation

regularised partial correlation

functional connectivity
simpler,   less meaningful,

network “discovery”,
better conditioned,

can handle more nodes

network modelling from FMRI data

non-biological dynamic Bayes nets

biophysical neural-groups to FMRI-signal forward 
model, fit to data using Bayes (e.g. DCM)

bottom-up neural network simulations

network of individual 
neurons simulated

network of groups of 
neurons simulated

(e.g. neural mass model)

graph theory

clusters / hierarchies, network hubs,
network summary statistics (e.g. small-worldness, efficiency)

Bayes nets

SEM



Which method to chose?
Interpretation

Relationship 
to RSNs

Summary 
values

Connections 
in system

Biophysical 
system

Connectomics 

Dual 
regression

Graph theory Network 
modelling

DCM Network 
modelling



That’s all folks


