

# Network modelling analysis

- Resting state data characteristics
- Preprocessing
- Network modelling analysis
- Methods comparisons and considerations  $\bullet$







### Data characteristics



# Replicable networks

### Large-scale inherent organisation is reproducibly found across studies and approaches

Damoiseaux et al (2006)





50%



# Grey matter networks

### Resting state network structure is localised in grey matter

















# Relationship to task

### Resting state networks are similar to task activation patterns at group and single subject level



Smith et al (2009), Tavor et al (2016)



### Functional vs structural connectivity

### Functional connectivity is related to structural connectivity



Honey et al (2009), Damoiseaux & Greicius (2009)





# Low frequency fluctuations?







### Low frequency fluctuations?

- BOLD decreases as 1/f
- Degrees of freedom increase as sqrt(f)







## Low frequency fluctuations?

- BOLD decreases as 1/f
- Degrees of freedom increase as sqrt(f)
- Combined effect contributes to RSN estimation across frequency range!







### Static versus dynamic connectivity

- Most connectivity measures are static (based on the full resting state scan)
- Dynamic connectivity is like to occur (changes) over time)
- Static connectivity measures reflect average across dynamic states
- Dynamic connectivity measures are challenging  $\bullet$ (in terms of noise influences, significance testing)

Allen et al (2012), Hutchison et al (2013)





**Dynamic connectivity** 







- Subjects fall asleep
- Changes in BOLD amplitude
- Related changes in correlation





Tagliazucchi and Laufs (2014), Horovitz et al (2008), Bijsterbosch et al (2017), Raul et al (2021)

### Arousal





### Preprocessing



# Careful cleanup required

- Structured artefacts much more of a problem for rfMRI than task-fMRI
  - No model of expected activation
  - Instead based on correlating timeseries with each other

Low motion > high motion



Van Dijk et al (2012)



- Head motion
- Cardiac & breathing cycles
- Scanner artefacts

### Noise sources





# Preprocessing overview

### Conventional

Motion & distortion correction

High pass temporal filtering

Registration

Noise reduction step

Nuisance regression

Volume censoring

ICA-based clean-up

Physiological noise regression

| I preprocessing steps          |                             |
|--------------------------------|-----------------------------|
| ۱                              | Slice timing correction     |
|                                |                             |
|                                | Spatial smoothing           |
|                                |                             |
|                                |                             |
|                                |                             |
| ps (use at least one of these) |                             |
|                                | Low pass temporal filtering |
|                                |                             |
|                                | Global signal regression    |
|                                |                             |
|                                |                             |
|                                |                             |



### Regressing out noise

- Head motion parameters
- White-matter / CSF
- Use GLM to remove nuisance timeseries
- Perform analysis on residuals
- "CompCor" method (PCA-based)

Muschelli et al (2014)



Xrotation Yrotation Zrotation Xtranslation Ytranslation Ztranslation CSF WM





### Lowpass temporal filtering

- E.g., common to remove frequencies > 0.1Hz
- May remove useful signal
- Not guaranteed to remove much artefact

Original BOLD data

Am Marine Marine

Highpass filtered data (>0.01 Hz)

Bandpass filtered data (0.01 - 0.1 Hz)





# Global signal regression

- Regress out mean timeseries across all voxels (or all grey matter voxels)
- Shifts connectivity values to be zero mean
- Therefore, more negative correlations
- Not necessary if using partial correlation

Murphy et al (2009)

Histogram of Correlation Values (Without Global Signal Regression)









### **GSR** effects & alternative



Glasser et al (2018)



### no additional correction

24RP-regression

24RP + volume censoring

### **ICA-AROMA**





### Clean-up comparison









*Ciric et al (2017)* 

### **Clean-up comparison**



### Estimated loss of temporal degrees of freedom: Mean regressors in model

![](_page_20_Picture_8.jpeg)

Full regressors Partial regressors **Excised** volumes

![](_page_20_Figure_10.jpeg)

![](_page_21_Picture_0.jpeg)

# Preprocessing advice

- Read up on the latest literature
- Nuisance regression is not enough
- Low-pass filtering is not enough & often not necessary when using other approaches
- Use ICA-based methods and/or volume censoring
- Use physiological noise regression when interested in brainstem or other vulnerable brain regions
- Don't use global signal regression (or if you must, show results with and without to asses GSR's impact)

# Data acquisition advice

- Just a guide, may vary depending on study aims!
- Whole brain coverage, voxelsize: 2 3 mm
- Scan duration:
  - 15-20 minutes per scan
  - Potentially multiple scans
- Repetition time: ideally close to 1 second (multiband/ multiplexed imaging)
- Paradigm: eyes open, fixation cross
- Auxiliary data: physiology, sleep

![](_page_22_Picture_10.jpeg)

![](_page_23_Picture_0.jpeg)

# Analysis method advice

- Don't do the same thing that your lab always does without further consideration
- Do think about your study and hypotheses
  - Brain areas will inform spatial summary
  - Expected change will inform feature type
- Ok to test multiple dimensionalities (e.g., ICA) without looking at final statistical results
- If possible, compare results across multiple brain representations

![](_page_23_Figure_8.jpeg)

![](_page_24_Picture_0.jpeg)

# Resting state big picture

![](_page_25_Picture_0.jpeg)

### The many options of resting state

![](_page_25_Picture_2.jpeg)

![](_page_25_Picture_3.jpeg)

![](_page_25_Picture_4.jpeg)

![](_page_25_Picture_5.jpeg)

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_7.jpeg)

![](_page_25_Picture_8.jpeg)

![](_page_26_Picture_0.jpeg)

### Even more choices...

•How to define the nodes?

- •Schaefer, Glasser, Gordon, Power, [...]
- •Data driven, task localizer, [...]

•How many nodes?

- •10, 100, 1000, [...]
- •Combining bilateral, combining modules, [...]

•How to calculate the edges?

- •Pearson, partial correlation, covariance, [...]
- •Regularization, tangent projection, [...]
- •How to relate edges to question of interest?
  - •Mass univariate, prediction, normative modeling, [...]
  - •Multiple comparison correction, network statistics, [...]

![](_page_26_Figure_19.jpeg)

![](_page_27_Picture_0.jpeg)

# Why more than one tool?

### "Brain representations"

![](_page_27_Picture_3.jpeg)

Bijsterbosch et al (2020)

![](_page_27_Figure_5.jpeg)

![](_page_28_Picture_0.jpeg)

# Why more than one tool?

### "Brain representations"

![](_page_28_Picture_3.jpeg)

Bijsterbosch et al (2020)

![](_page_28_Figure_5.jpeg)

### Which tool to use?

What parts of the brain are interesting in your study?

What type of change do you expect (e.g., strength/ shape/ connection)?

How much power do you have?

![](_page_28_Picture_10.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_29_Picture_3.jpeg)

### ICA + dual regression (Melodic) **Yesterday**

**Probabilistic Modes** (PROFUMO) **Tomorrow** 

### **Options within FSL**

![](_page_29_Picture_7.jpeg)

**Network modeling** (FSLnets) Today

![](_page_30_Picture_0.jpeg)

### Time for a break!

![](_page_30_Picture_2.jpeg)

![](_page_31_Picture_0.jpeg)

Network modelling analysis

![](_page_32_Picture_0.jpeg)

### Glossary

- Node = functional brain region
  - Contiguous nodes = interconnected 'blobs'
  - Non-contiguous nodes = e.g. bilateral
- Parcellation = separation of all voxels into a set of nodes
  - Hard parcellation = binary regions
  - Soft parcellation = weighted regions
- Edge = connection between nodes
- Connectomics = mapping all connections between all brain regions

![](_page_32_Figure_10.jpeg)

![](_page_32_Figure_11.jpeg)

![](_page_33_Picture_0.jpeg)

### Analysis steps

![](_page_33_Figure_2.jpeg)

- Node definition
- Timeseries extraction
- Edge calculation
- Network matrix
- Group analysis

![](_page_34_Picture_0.jpeg)

### Anatomical atlases

### Functional atlases

![](_page_34_Picture_4.jpeg)

![](_page_34_Picture_5.jpeg)

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

### **Data-driven parcellation**

![](_page_34_Picture_8.jpeg)

### Anatomical atlases

- Harvard-Oxford/ AAL
- Avoid if possible because typically based on small number of subjects and not a good estimation of functional boundaries

![](_page_35_Picture_4.jpeg)

![](_page_35_Picture_5.jpeg)

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

### Functional atlases

### **Data-driven parcellation**

![](_page_35_Picture_9.jpeg)

### Anatomical atlases

### **Functional atlases**

- Harvard-Oxford/ AAL
- Avoid if possible because typically based on small number of subjects and not a good estimation of functional boundaries

- How to map onto individuals is very important

![](_page_36_Picture_8.jpeg)

![](_page_36_Picture_9.jpeg)

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

![](_page_36_Picture_11.jpeg)

### **Data-driven parcellation**

Yeo 2011/ Glasser 2016 Many good functional atlases available, though few comparison studies

![](_page_36_Picture_16.jpeg)

### Anatomical atlases

### **Functional atlases**

- Harvard-Oxford/ AAL
- Avoid if possible because typically based on small number of subjects and not a good estimation of functional boundaries

- How to map onto individuals is very important

![](_page_37_Picture_8.jpeg)

![](_page_37_Picture_9.jpeg)

Tzourio-Mazoyer et al (2002), Yeo et al (2011), Glasser et al (2016), Cohen et al (2009)

![](_page_37_Picture_11.jpeg)

### Yeo 2011/ Glasser 2016 Many good functional atlases available, though few comparison studies

### **Data-driven parcellation**

- ICA/ Clustering/ Gradients
- Estimate parcellation from ulletthe same dataset used for further analyses
- How to map group parcellation onto individuals very important

![](_page_37_Picture_17.jpeg)

![](_page_37_Picture_18.jpeg)

![](_page_38_Picture_0.jpeg)

![](_page_38_Picture_1.jpeg)

![](_page_38_Picture_2.jpeg)

### ICA for parcellation

![](_page_38_Picture_4.jpeg)

![](_page_38_Picture_5.jpeg)

![](_page_38_Picture_6.jpeg)

![](_page_38_Picture_7.jpeg)

![](_page_38_Picture_8.jpeg)

![](_page_38_Picture_9.jpeg)

![](_page_38_Picture_10.jpeg)

![](_page_38_Picture_11.jpeg)

![](_page_38_Picture_12.jpeg)

![](_page_38_Picture_13.jpeg)

![](_page_39_Picture_0.jpeg)

### **Timeseries extraction**

### Hard parcellation:

- Masking (mean timeseries)
- Eigen timeseries (PCA)
- Using multilayer classifier

ICA (soft parcellation):

Dual regression/ back projection  $\bullet$ 

Alternative:

- Hierarchical estimation of group & subject
- e.g. PROFUMO

Hacker et al (2013), Fillippini et al (2009), Calhoun et al (2001), Harrison et al (2015), Bijsterbosch et al (2019)

![](_page_39_Figure_12.jpeg)

![](_page_40_Picture_0.jpeg)

# Edge calculation

Presence/ absence of edges

Strength of edges

• Directionality of edges

![](_page_40_Figure_5.jpeg)

![](_page_41_Picture_0.jpeg)

### **Direct versus indirect connections**

- Correlation between 2 and 3 will exist
- Therefore full correlation will incorrectly estimate connection 2-3
- 2-3 is an indirect connection

![](_page_41_Figure_5.jpeg)

![](_page_42_Picture_0.jpeg)

### Partial correlation

- Before correlating 2 and 3, first regress 1 out of both ("orthogonalise wrt 1")
  If 2 and 3 are still correlated a direct
  - If 2 and 3 are still correlated, a direct connection exists
- More generally, first regress all other nodes' timecourses out of the pair in question
  - Equivalent to the inverse covariance matrix

![](_page_42_Figure_6.jpeg)

![](_page_42_Figure_7.jpeg)

# Regularisation

![](_page_43_Picture_1.jpeg)

- Urgh! If you have 200 nodes and 100 timepoints, this is impossible!
- A problem of DoF need large #timepoints #nodes
- When inverting a "rank-deficient" matrix it is common to aid this with some mathematical conditioning, e.g. force it to be sparse (force low values that are poorly estimated to zero)
- Regularised partial correlation (such as ICOV, Ridge)
- But still important to maximise temporal degrees of freedom

![](_page_44_Picture_0.jpeg)

### Need to carefully define nodes

![](_page_44_Figure_2.jpeg)

![](_page_44_Figure_3.jpeg)

Berkson's paradox = false positive (2-3)

![](_page_44_Figure_5.jpeg)

![](_page_44_Figure_6.jpeg)

Over-splitting = false negative (1-2)

![](_page_44_Picture_9.jpeg)

![](_page_45_Picture_0.jpeg)

# Directionality of edges

- Directionality is hard to estimate in BOLD data
- Don't use lag-based methods such as Granger causality
- Perhaps directionality is oversimplistic view of neural connectivity (particularly in resting-state)?

![](_page_45_Figure_5.jpeg)

Smith et al (2011)

![](_page_46_Picture_0.jpeg)

# Building a network matrix

![](_page_46_Picture_2.jpeg)

![](_page_47_Picture_0.jpeg)

### Network matrix

### I 2 3 4 5 6 7 8 9 IO II I2 I3 I4 I5 I6 I7 I8 I9 20

![](_page_47_Picture_3.jpeg)

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

![](_page_48_Picture_0.jpeg)

### Hierarchical clustering

![](_page_48_Picture_2.jpeg)

![](_page_49_Picture_0.jpeg)

### Partial correlation is sparser than full

### 9 40 21 27 44 8 32 37 14 43 7 20 38 16 28 26 25 36 11 19 22 45 1 23 2 24 10 41 29 33 4 31 3 6 12 30 5 15 13 17 42 34 35 18 39

![](_page_49_Picture_3.jpeg)

### Full correlation matrix

Partial correlation matrix

![](_page_50_Picture_0.jpeg)

![](_page_50_Figure_2.jpeg)

![](_page_50_Figure_3.jpeg)

![](_page_50_Figure_4.jpeg)

### Group analysis

- Calculate network matrix for each subject
- Combine all network matrices into one
- Perform group-level comparisons:

![](_page_50_Picture_9.jpeg)

Multivariate prediction methods (SVM)

![](_page_51_Picture_0.jpeg)

### Python tool

### This practical will be a bit different from other practicals

### **FSLnets**

![](_page_51_Picture_5.jpeg)

![](_page_52_Picture_0.jpeg)

### Example: positive-negative mode

![](_page_52_Figure_2.jpeg)

Smith et al (2015)

![](_page_52_Figure_4.jpeg)

![](_page_53_Picture_0.jpeg)

### Example: connectivity fingerprint

![](_page_53_Figure_2.jpeg)

Finn et al (2015)

![](_page_53_Figure_4.jpeg)

![](_page_54_Picture_0.jpeg)

# Comparison of methods

![](_page_55_Picture_0.jpeg)

### Overview of resting state methods

![](_page_55_Picture_2.jpeg)

**Voxel-based** 

- Seed-based correlation analysis
- Independent component analysis
- Amplitude of low frequency fluctuations
- Regional homogeneity

![](_page_55_Picture_8.jpeg)

### **Node-based**

- Network modelling analysis
- Graph theory analysis
- Dynamic causal modelling
- Non-stationary methods

![](_page_56_Picture_0.jpeg)

### Seed-based correlation

- Easy to interpret
- No correspondence problem
- Seed-selection bias
- Only models seed-effect (ignoring complex structure & noise)

![](_page_56_Picture_6.jpeg)

![](_page_56_Picture_7.jpeg)

![](_page_56_Picture_8.jpeg)

### 

![](_page_56_Picture_10.jpeg)

![](_page_56_Picture_11.jpeg)

![](_page_56_Picture_12.jpeg)

![](_page_57_Picture_0.jpeg)

### Seed-selection bias

### Seed-based correlation results are strongly influenced by small changes is seed location

![](_page_57_Picture_3.jpeg)

Cole et al (2010)

![](_page_58_Picture_0.jpeg)

- Multivariate: decompose full dataset
- Test for shape & amplitude
- Can be hard to interpret
- No control over decomposition (may not get breakdown you want)

ICA

![](_page_58_Picture_8.jpeg)

![](_page_59_Picture_0.jpeg)

# Graph theory

- Simple summary measures (derived from network matrix)
- Network matrix often binarised
- Difficult to meaningfully interpret (abstract and far removed from data)

![](_page_59_Picture_5.jpeg)

![](_page_59_Picture_6.jpeg)

Rubinov et al (2010)

![](_page_60_Picture_0.jpeg)

### Dynamic causal modelling

- Directional interpretation (effective connectivity)
- Biophysical model
- Assumes HRF homogeneity
- Limited model comparisons

![](_page_60_Figure_7.jpeg)

Daunizeau et al (2011)

![](_page_61_Picture_0.jpeg)

### Overview of node-based methods

clusters / hierarchies, network hubs, network summary statistics (e.g. small-worldness, efficiency)

### network modelling from FMRI data

### effective connectivity

more complex, more meaningful, pre-specify (constrain) network model, harder to estimate, can handle fewer nodes

### **bottom-up neural network simulations**

network of individual neurons simulated

closeness to (interaction with) real FMRI data network of groups of neurons simulated (e.g. neural mass model)

### graph theory

![](_page_61_Figure_12.jpeg)

![](_page_62_Picture_0.jpeg)

### Which method to chose?

![](_page_62_Figure_2.jpeg)

![](_page_63_Picture_0.jpeg)

### That's all folks

![](_page_63_Picture_2.jpeg)